Threadpools
Recipe | Crates | Categories |
---|---|---|
Calculate the SHA256 of ISO files concurrently | ||
Draw a fractal, dispatching work to a thread pool |
Calculate the SHA256 of ISO files concurrently
This example calculates the SHA256 for every file with iso extension in the current directory. A threadpool generates threads equal to the number of cores present in the system found with num_cpus::get
⮳. walkdir::WalkDir::new
⮳ iterates the current directory and calls walkdir::WalkDir::new
⮳ to perform the operations of reading and computing SHA256 hash.
use std::fs::File; use std::io::BufReader; use std::io::Error; use std::io::Read; use std::path::Path; use std::sync::mpsc::channel; use ring::digest::Context; use ring::digest::Digest; use ring::digest::SHA256; use threadpool::ThreadPool; use walkdir::WalkDir; // Verify the iso extension fn is_iso(entry: &Path) -> bool { matches!(entry.extension(), Some(e) if e.to_string_lossy().to_lowercase() == "iso") } fn compute_digest<P: AsRef<Path>>(filepath: P) -> Result<(Digest, P), Error> { let mut buf_reader = BufReader::new(File::open(&filepath)?); let mut context = Context::new(&SHA256); let mut buffer = [0; 1024]; loop { let count = buf_reader.read(&mut buffer)?; if count == 0 { break; } context.update(&buffer[..count]); } Ok((context.finish(), filepath)) } fn main() -> Result<(), Error> { let pool = ThreadPool::new(num_cpus::get()); let (tx, rx) = channel(); for entry in WalkDir::new("/home/user/Downloads") .follow_links(true) .into_iter() .filter_map(|e| e.ok()) .filter(|e| !e.path().is_dir() && is_iso(e.path())) { let path = entry.path().to_owned(); let tx = tx.clone(); pool.execute(move || { let digest = compute_digest(path); tx.send(digest).expect("Could not send data!"); }); } drop(tx); for t in rx.iter() { let (sha, path) = t?; println!("{:?} {:?}", sha, path); } Ok(()) }
Draw a fractal, dispatching work to a thread pool
This example generates an image by drawing a fractal from the Julia set⮳ with a thread pool for distributed computation.
Allocate memory for output image of given width and height with image::ImageBuffer::new
⮳.
image::Rgb::from_channels
⮳ calculates RGB pixel values. Create threadpool::ThreadPool
⮳ with thread count equal to number of cores with num_cpus::get
⮳.
threadpool::ThreadPool::execute
⮳ receives each pixel as a separate job.
std::sync::mpsc::channel
⮳ receives the jobs and std::sync::mpsc::Receiver::recv
⮳ retrieves them.
image::ImageBuffer::put_pixel
⮳ uses the data to set the pixel color.
image::ImageBuffer::save
⮳ writes the image to output.png
.
use std::fs;
use std::sync::mpsc::channel;
use anyhow::Result;
use image::ImageBuffer;
use image::Rgb;
use num::complex::Complex;
use threadpool::ThreadPool;
// Function converting intensity values to RGB
fn wavelength_to_rgb(wavelength: u32) -> Rgb<u8> {
let wave = wavelength as f32;
let (r, g, b) = match wavelength {
380..=439 => ((440. - wave) / (440. - 380.), 0.0, 1.0),
440..=489 => (0.0, (wave - 440.) / (490. - 440.), 1.0),
490..=509 => (0.0, 1.0, (510. - wave) / (510. - 490.)),
510..=579 => ((wave - 510.) / (580. - 510.), 1.0, 0.0),
580..=644 => (1.0, (645. - wave) / (645. - 580.), 0.0),
645..=780 => (1.0, 0.0, 0.0),
_ => (0.0, 0.0, 0.0),
};
let factor = match wavelength {
380..=419 => 0.3 + 0.7 * (wave - 380.) / (420. - 380.),
701..=780 => 0.3 + 0.7 * (780. - wave) / (780. - 700.),
_ => 1.0,
};
let (r, g, b) = (
normalize(r, factor),
normalize(g, factor),
normalize(b, factor),
);
Rgb([r, g, b])
}
// Maps Julia set distance estimation to intensity values
fn julia(
c: Complex<f32>,
x: u32,
y: u32,
width: u32,
height: u32,
max_iter: u32,
) -> u32 {
let width = width as f32;
let height = height as f32;
let mut z = Complex {
// scale and translate the point to image coordinates
re: 3.0 * (x as f32 - 0.5 * width) / width,
im: 2.0 * (y as f32 - 0.5 * height) / height,
};
let mut i = 0;
for t in 0..max_iter {
if z.norm() >= 2.0 {
break;
}
z = z * z + c;
i = t;
}
i
}
// Normalizes color intensity values within RGB range
fn normalize(color: f32, factor: f32) -> u8 {
((color * factor).powf(0.8) * 255.) as u8
}
fn main() -> Result<()> {
let (width, height) = (1920, 1080);
let mut img = ImageBuffer::new(width, height);
let iterations = 300;
let c = Complex::new(-0.8, 0.156);
let pool = ThreadPool::new(num_cpus::get());
let (tx, rx) = channel();
for y in 0..height {
let tx = tx.clone();
pool.execute(move || {
for x in 0..width {
let i = julia(c, x, y, width, height, iterations);
let pixel = wavelength_to_rgb(380 + i * 400 / iterations);
tx.send((x, y, pixel)).expect("Could not send data!");
}
});
}
for _ in 0..(width * height) {
let (x, y, pixel) = rx.recv()?;
img.put_pixel(x, y, pixel);
}
if !fs::exists("temp")? {
fs::create_dir("temp")?;
}
img.save("temp/output.png")?;
println!("Image saved!");
Ok(())
}