Parallel Tasks
rayon
Simple work-stealing parallelism for Rust.
Iterate in parallel
Convert .iter()
or iter_mut()
or into_iter()
into par_iter()
or par_iter_mut()
or into_par_iter()
to execute in parallel.
use rayon::prelude::*; fn sum_of_squares(input: &[i32]) -> i32 { input.par_iter().map(|i| i * i).sum() } fn increment_all(input: &mut [i32]) { input.par_iter_mut().for_each(|p| *p += 1); } fn main() { let mut v = [1, 2, 3]; increment_all(&mut v[..]); println!("{}", sum_of_squares(&v[..])); }
Sort in parallel
use rayon::prelude::*; fn main() { let mut v = [-5, 4, 1, -3, 2]; v.par_sort(); println!("{:#?}", v); }
Implement custom parallel tasks
Rayon implements rayon::join
⮳, rayon::join
⮳, rayon::spawn
⮳ that may run on the global or a custom Rayon threadpool⮳.
fn main() { // Build the threadpool let pool = rayon::ThreadPoolBuilder::new() .num_threads(8) .build() .unwrap(); // `install` executes the closure within the threadpool. Any attempts // to use join, scope, or parallel iterators will then operate // within that threadpool. let n = pool.install(|| fib(20)); println!("{}", n); } fn fib(n: usize) -> usize { if n == 0 || n == 1 { return n; } // Conceptually, calling join() is similar to spawning two threads, // one executing each of the two closures. let (a, b) = rayon::join(|| fib(n - 1), || fib(n - 2)); // runs inside of `pool` a + b }
Mutate the elements of an array in parallel
The example uses the rayon
⮳ crate, which is a data parallelism library for Rust.
rayon
⮳ provides the rayon::iter::IntoParallelRefIterator::par_iter_mut
⮳ method for any parallel iterable data type. This is an iterator-like chain that potentially executes in parallel.
use rayon::prelude::*; fn main() { let mut arr = [0, 7, 9, 11]; arr.par_iter_mut().for_each(|p| *p -= 1); println!("{:?}", arr); }
Test in parallel if any or all elements of a collection match a given predicate
This example demonstrates using the rayon::iter::ParallelIterator::any
⮳ and rayon::iter::ParallelIterator::any
⮳ methods, which are parallelized counterparts to std::iter::Iterator::any
⮳ and std::iter::Iterator::all
⮳. rayon::iter::ParallelIterator::any
⮳ checks in parallel whether any element of the iterator matches the predicate, and returns as soon as one is found. rayon::iter::ParallelIterator::any
⮳ checks in parallel whether all elements of the iterator match the predicate, and returns as soon as a non-matching element is found.
use rayon::prelude::*; fn main() { let mut vec = vec![2, 4, 6, 8]; assert!(!vec.par_iter().any(|n| (*n % 2) != 0)); assert!(vec.par_iter().all(|n| (*n % 2) == 0)); assert!(!vec.par_iter().any(|n| *n > 8)); assert!(vec.par_iter().all(|n| *n <= 8)); vec.push(9); assert!(vec.par_iter().any(|n| (*n % 2) != 0)); assert!(!vec.par_iter().all(|n| (*n % 2) == 0)); assert!(vec.par_iter().any(|n| *n > 8)); assert!(!vec.par_iter().all(|n| *n <= 8)); println!("{:?}", vec); }
Search items using a given predicate in parallel
This example uses rayon::iter::ParallelIterator::find_any
⮳ and rayon::iter::ParallelIterator::find_any
⮳ to search a vector in parallel for an element satisfying the predicate in the given closure.
If there are multiple elements satisfying the predicate defined in the closure argument of rayon::iter::ParallelIterator::find_any
⮳ rayon
⮳ returns the first one found, not necessarily the first one.
Also note that the argument to the closure is a reference to a reference (&&x
). See the discussion on std::iter::Iterator::find
⮳ for additional details.
use rayon::prelude::*; fn main() { let v = vec![6, 2, 1, 9, 3, 8, 11]; let f1 = v.par_iter().find_any(|&&x| x == 9); let f2 = v.par_iter().find_any(|&&x| x % 2 == 0 && x > 6); let f3 = v.par_iter().find_any(|&&x| x > 8); assert_eq!(f1, Some(&9)); assert_eq!(f2, Some(&8)); assert!(f3 > Some(&8)); println!("{:?}", v); }
Sort a vector in parallel
This example will sort in parallel a vector of Strings.
Allocate a vector of empty Strings. par_iter_mut().for_each
populates random values in parallel. Although multiple options⮳
exist to sort an enumerable data type, rayon::slice::ParallelSliceMut::par_sort_unstable
⮳ is usually faster than stable sort ⮳ algorithms.
use rand::Rng; use rand::distributions::Alphanumeric; use rand::thread_rng; use rayon::prelude::*; fn main() { let mut vec = vec![String::new(); 100]; vec.par_iter_mut().for_each(|p| { let mut rng = thread_rng(); *p = (0..5).map(|_| rng.sample(Alphanumeric) as char).collect(); }); vec.par_sort_unstable(); println!("{:?}", vec); }
Map-reduce in parallel
This example uses rayon::iter::ParallelIterator::filter
⮳ rayon::iter::ParallelIterator::map
⮳ and rayon::iter::ParallelIterator::reduce
⮳ to calculate the average age of Person
objects whose age is over 30.
rayon::iter::ParallelIterator::filter
⮳ returns elements from a collection that satisfy the given predicate. rayon::iter::ParallelIterator::map
⮳ performs an operation on every element, creating a new iteration, and rayon::iter::ParallelIterator::reduce
⮳ performs an operation given the previous reduction and the current element. Also shows use of rayon::iter::ParallelIterator::sum
⮳ which has the same result as the reduce operation in this example.
use rayon::prelude::*; struct Person { age: u32, } fn main() { let v: Vec<Person> = vec![ Person { age: 23 }, Person { age: 19 }, Person { age: 42 }, Person { age: 17 }, Person { age: 17 }, Person { age: 31 }, Person { age: 30 }, ]; let num_over_30 = v.par_iter().filter(|&x| x.age > 30).count() as f32; let sum_over_30 = v .par_iter() .map(|x| x.age) .filter(|&x| x > 30) .reduce(|| 0, |x, y| x + y); let alt_sum_30: u32 = v.par_iter().map(|x| x.age).filter(|&x| x > 30).sum(); let avg_over_30 = sum_over_30 as f32 / num_over_30; let alt_avg_over_30 = alt_sum_30 as f32 / num_over_30; assert!((avg_over_30 - alt_avg_over_30).abs() < f32::EPSILON); println!("The average age of people older than 30 is {}", avg_over_30); }
Generate JPEG thumbnails in parallel
This example generates thumbnails for all jpg
files in the current directory then saves them in a new folder called thumbnails
.
glob::glob_with::glob_with
⮳ finds jpeg files in current directory. rayon
resizes images in parallel using rayon::iter::IntoParallelRefIterator::par_iter
⮳ calling image::DynamicImage::resize
⮳
use std::fs::create_dir_all;
use std::path::Path;
use anyhow::Context;
use anyhow::Result;
use glob::MatchOptions;
use glob::glob_with;
use image::imageops::FilterType;
use rayon::prelude::*;
fn main() -> Result<()> {
let options: MatchOptions = Default::default();
let files: Vec<_> = glob_with("*.jpg", options)?
.filter_map(|x| x.ok())
.collect();
if files.is_empty() {
println!("No .jpg files found in current directory");
return Ok(());
}
let thumb_dir = "thumbnails";
create_dir_all(thumb_dir)?;
println!("Saving {} thumbnails into '{}'...", files.len(), thumb_dir);
let image_failures: Vec<_> = files
.par_iter()
.map(|path| {
make_thumbnail(path, thumb_dir, 300)
.with_context(|| path.display().to_string())
})
.filter_map(|x| x.err())
.collect();
image_failures.iter().for_each(|x| println!("{}", x));
println!(
"{} thumbnails saved successfully",
files.len() - image_failures.len()
);
Ok(())
}
fn make_thumbnail<PA, PB>(
original: PA,
thumb_dir: PB,
longest_edge: u32,
) -> Result<()>
where
PA: AsRef<Path>,
PB: AsRef<Path>,
{
let img = image::open(original.as_ref())?;
let file_path = thumb_dir.as_ref().join(original);
Ok(img
.resize(longest_edge, longest_edge, FilterType::Nearest)
.save(file_path)?)
}